LENDVAI ENDRE

A részecskefizika kialakulása – a Standard Modell elõtt 

Az emberiséget õsidõk óta foglalkoztatja az a kérdés, hogy melyek az anyag alapvetõ építõkövei. Thalészszerint a víz minden lét alapja, ebbõl keletkezik, és ezzé válik minden. Anaximenészaz alapelemet a levegõben, Herakleitosz pedig a tûzben találta meg, míg Parmenidésza világot és a létet homogén gömb formájában képzelte el. Arisztotelész szerint a világ négy elem: a föld, a víz, a levegõ és a tûz különbözõ arányú keverékébõl és bomlásából jön létre. Ezt a négy elemet elõször Empedoklésznél találjuk meg.
Démokritoszidõszámításunk elõtt a negyedik században élt és alkotta meg elméletét, amely végül „valóssággá lett álomnak" bizonyult. Így ír: Adott az oszthatatlan testek sokasága, végtelen számosságukban és alakjuk változatosságában... Mindegyikük természete ugyanaz... egymástól csak alakban és az alkotóelemek elrendezésében különböznek. Az atomoknak mindenféle alakjuk, külsõ megjelenésük és nagyságuk van: némelyik érdes, másik horgas, ismét másik konkáv vagy konvex, és ismét másoknak megszámlálhatatlan a változatosságuk. Az atomok alakjainak száma végtelen, minthogy semmi ok nincs az atom számára, hogy pont ilyen vagy pont amolyan legyen. Egyesek visszapattannak különbözõ irányokban, míg mások összekapcsolódnak alakjuk vagy helyzetük, elrendezõdésük szimmetriája miatt és együtt maradnak. Így állnak elõ az összetett testek. Arisztotelész bírálta ezt a „kísérleti megalapozás nélküli elméletet", amely kétezer éven keresztül a háttérben maradt.
A 17. század közepéig a következõ elméletek éltek egymás mellett vagy egymással összefonódva:
1.Az arisztotelészi négy elem hipotézise.
2.Paracelsus nyomán átmenetileg nagyon népszerûvé vált a három õselem: a higany, a só és a kén segítségével konstruált világ.
3.Descartes szerint az anyag részecskékbõl áll, méghozzá három finomsági fokban, ezek teljesen kitöltik a teret, és mindegyikük más és más jelenségcsoportért felelõs.
4.Gassendi páter a démokritoszi atomelméletnek a keresztény ideológia által elfogadható formába öntött változatát vallotta. Eszerint az atomok nem öröktõl fogva valók, Isten teremtette õket, és Isten a világ végén megsemmisítheti azokat. Mozgásuk nem a véletlen függvénye, hanem Isten akarata szerinti. Az atomok alapvetõ tulajdonsága a szilárdság, és hogy képtelenek egymáson áthatolni. Nagyságukban és mozgásukban azonban különböznek, különbözõképpen társulhatnak.
A 18-19. század fordulója táján az egyre sokasodó kísérleti tapasztalatok birtokában a kémia szólt bele az atomfogalom alakításába. Lavoisier az 1790 körül végzett vizsgálataiban tisztázta az elem fogalmát. Daltonnak köszönhetjük azt a felismerést, hogy egy-egy vegyi elem összes atomja, illetve egy-egy vegyület minden molekulája valamennyi tulajdonságában megegyezik. Nevéhez fûzõdik az atomsúly meghatározása is, az atomok tömegét a hidrogénatom tömegéhez viszonyította. Avogadro1811-ben ehhez hozzáfûzte azt a róla elnevezett szabályt, miszerint ideális gázok térfogategységében azonos hõmérsékleten és nyomáson egyforma számú molekula van. 1865-ben Loschmidt becslést adott az általa gömb alakúnak feltételezett gázmolekulák átmérõjérõl. Az egy molban levõ molekulák számára a 6·1023értéket találta (ez a jól ismert Avogadro-szám). Ezt a számot Maxwell1872-ben megerõsítette. Prout 1815-ben felfigyelt arra, hogy a különbözõ elemek atomsúlya a hidrogén atomsúlyában kifejezve jó közelítéssel egész szám. Ezért feltételezte, hogy minden kémiai elem egyetlen õselembõl, a hidrogénbõl épül fel.
1869-ben Mengyelejevés Meyeregymástól függetlenül mutatott rá, ha az elemeket atomsúlyuk alapján növekvõ sorrendbe rendezzük, az elemek kémiai tulajdonságai jellegzetes periodicitást mutatnak. Mengyelejev figyelt fel elõször arra, hogy a még akkor ismeretlen elemek periódusos rendszerben elfoglalt helyébõl következtetni lehet azok jellegzetes kémiai és fizikai tulajdonságaira.
A kémikusok számára a periódusos rendszer gyorsan „munkaeszközzé" vált, a fizikusok elõtt állt a feladat, hogy a felismert szabályosságokra magyarázatot találjanak (a sok évszázadon át oszthatatlannak tartott atom szerkezetének megismerésével). A 18. század második felében viharos fejlõdésnek indultak az elektromos és mágneses erõkkel összefüggõ kutatások. Megszületett Coulombtörvénye és Faradaytörvényei. Faraday az elektrolízis vizsgálata során különbözõ törvényszerûségeket talált, meghatározta az elemi töltés nagyságát, felismerte az elektromágneses indukció jelenségét. Az empirikus tapasztalatokat összegezve Maxwell megalkotta híres egyenleteit, melyek az elektromos tér idõbeli változásait a mágneses tér térbeli eloszlásával kapcsolják össze és fordítva. Maxwell rájött: ha a tovaterjedõ elektromágneses hullámok leírására alkalmazza egyenleteit, a terjedési sebesség nagyságára pontosan a fény vákuumbeli terjedési sebességét kapja. Maxwell ebbõl az eredménybõl arra következtetett, hogy a fényhullámok valójában igen rövid elektromágneses hullámok. A fény hullámtermészetét bizonyító kísérletek (Newton) és elméletek (Huygensés Young) ellenére Maxwell kitartott korpuszkuláris elmélete mellett. Maxwell egyenletei segítségével az optika összes törvényeit magyarázni tudjuk.
1891-ben Lorentzfelállította klasszikus elektronelméletét, miszerint az elektromágneses jelenségek hordozója az anyagtól mentes éter, létrehozója az elektromos töltések mozgása. Az egyenletesen mozgó vagy nyugvó töltések a sztatikus vagy stacionárius teret, a gyorsuló töltések pedig az elektromágneses hullámokat hozzák létre. 1895-ben Röntgenfelfedezte a róla elnevezett láthatatlan sugárzást, ami képes áthatolni a szilárd testeken.
A 19. század vége felé a fizikusok a gázokon átáramló elektromosságra fordították a figyelmüket. Már régen tudták, hogy az egyébként elektromosan jól szigetelõ gázokban nagy elektromos feszültségnél átütés keletkezik. A kisülés a pici szikráktól a viharokban megtapasztalt hatalmas villámokig terjed. A jelenség kutatói rájöttek, ha a gáz nyomását csökkentik, az elektromosság sokkal békésebben halad át a gázon. Így például a kis gáznyomású Crookes-csövekre nagy feszültséget kapcsolva, a katódtól az anód felé tartó éles nyalábot láthatunk. Crookes megfigyelte azt is, ha mágnest helyez a csõ közelébe, a nyaláb eltér, mintha elektromos áram vagy negatív töltésû részecskék repülnének ki a katódtól. Perrin észrevette, hogy a nyaláb útjába helyezett fémlap negatív töltésû lesz. Eszerint a részecskéknek negatív töltésûnek kell lenniük, amelyek ugyanúgy haladnak át a gázon, mint Faraday ionjai a folyadékokon elektrolíziskor. A jelenséget katódsugárzásnak nevezték el, viselkedésük a kutatások homlokterébe került. Közel fél évszázados rejtélyét Thomson 1897-ben oldotta meg. Ezt az évet tekinthetjük az elektron születési évének. Thomson úgy gondolta, hogy a katódsugár olyan részecskékbõl áll, amiknek töltésük van. Kísérleteiben a részecskéknek a fajlagos töltését mérte az elektromos és a mágneses tér katódsugarakra gyakorolt hatásán keresztül. Vizsgálatai alapján egyértelmûen leszögezte, hogy a katódsugarat azonos részecskék alkotják, bármilyen elemet is használunk katódként vagy töltõgázként. Thomson úgy gondolta, majd kísérletileg is bebizonyította, hogy a katódsugarakat alkotó részecskék töltése megegyezik a Faraday által meghatározott elemi töltés értékével. Ennek alapján azt kapta, hogy a részecskék tömege a hidrogénatom tömegénél 1840-szer kisebb. Thomson ebbõl arra a következtetett, hogy Faraday ionjai az elektromos töltést vivõ atomok, a katódsugarakat alkotó részecskék pedig maguk az elektromos töltések. Ezeknek a részecskéknek az elektron nevet adta. Az atomot pozitív töltésû tömör gömbnek képzelte, amelyben parányi elektronok vannak elszórva, mint a fekete magvak a görögdinnye húsában. Ha egy atom fölös energiát kap, azaz gerjesztett állapotba kerül, akkor a belsejében az addig az elektromos kölcsönhatások miatt egyensúlyban lévõ elektronok egyensúlyi helyzetük körül rezegni kezdenek, miközben különbözõ hullámhosszú elektromágneses (fény-) hullámokat bocsátanak ki. Fáradságos számításokat végeztek, hogy a modellel magyarázni tudják az elemek vonalas színképét. Ez azonban nem sikerült, késõbb Rutherford atommodellje vezetett el a sikerhez.
1896-ban Becquerel megfigyelte, hogy az uránsók fekete papírba burkolózva is nyomot hagynak a fényképezõlemezen, azaz szintén kibocsátanak szilárd testeken is áthatoló sugárzást. Ezt a jelenséget késõbb radioaktivitásnak nevezték el.
A következõ évben Marie és Pierre Curie felfedezte az igen erõsen sugárzó rádiumot és a bizmut radioaktív izotópját. A sugárzás természetét tanulmányozva Rutherford 1899-ben megállapította, hogy háromféle sugárzás van: a-sugárzás, melyrõl késõbb bebizonyosodott, hogy héliumionok; b-sugárzás, amirõl kiderült, hogy valójában igen gyors elektronok; valamint a g-sugárzás, amely a röntgensugárzáshoz hasonló, de hullámhossza sokkal kisebb, és így energiája sokkal nagyobb. 1902-ben Rutherford és Soddy kimutatták, hogy az urániumból a-részecskék kibocsátása közben másik elem keletkezik, vagyis az atom nem oszthatatlan elemi részecske. A következõ évben felismerték az a- és b-sugárzásokra épülõ bomlási folyamatokat, amelyek során a kiindulási elemekbõl újak keletkeznek.
1914-ben Chadwick a különbözõ radioaktív anyagok által kibocsátott b-sugárzás spektrumát tanulmányozta. Ez a spektrum lényegesen különbözött az a- és g-sugarak vonalas spektrumától. A b-sugarak mozgási energiája ugyanis folytonos eloszlású volt, a nullához közeli értéktõl igen nagy értékekig terjedt - végállapotban pedig a részecskék energiájának összege kisebb volt, mint a kezdeti energia. A b-sugarak folytonos energiaspektrumának egyik lehetséges magyarázata az volt, hogy a b-sugarak nagy energiaveszteséget szenvednek, amikor eltávoznak a radioaktív anyagból, amelyben keletkeztek. A kísérletek azonban ellentmondtak ennek a feltevésnek. Ezen ellentmondás feloldására Bohr még azt is fölvetette, hogy esetleg az energiamegmaradás törvénye csak átlagértékében érvényes a radioaktív b-bomlásra. 1931-ben Pauli más megoldást javasolt: kísérje a b-részecske kibocsátását egy másik, nagyon nehezen észlelhetõ részecske, ami majd helyreállítja az energiamegmaradást. Ez a részecske elektromosan semleges, tömege pedig igen pici, így nem meglepõ, hogy nagyon nehéz detektálni. A részecske végül a neutrínó (n) nevet kapta.
A neutrínók kölcsönhatása az anyaggal olyan kicsi, hogy többnyire kölcsönhatás nélkül keresztülhaladnak a Földön, sõt a Napon is. A neutrínók közvetlen kísérleti kimutatása - az anyaggal való igen gyenge kölcsönhatása miatt - csak mintegy húsz évvel az elméleti jóslat után sikerült. Az ehhez szükséges kísérletet atomreaktorok mellett végezték, ahol a magreakciók során nagyon nagy számban keletkeznek neutrínók.
A katódsugárcsõvel végzett kísérletek valószínûsítették, hogy az elektron fõszerepet játszik az atom felépítésében. Azonban továbbra is rejtélyesnek tûnt az elektronok töltését semlegesítõ pozitív alkotórész felépítése.
A döntõ fordulatot Rutherford híres, a-részecskékkel végzett szóráskísérletei hozták 1911-ben. Vékony aranylemezt a-részecskékkel sugárzott be, és meglepõ eredményt kapott. Erre így emlékezett vissza: Határozottan ez volt a leghihetetlenebb eredmény, amellyel életemben találkoztam. Majdnem olyan hihetetlen volt, mintha valaki egy 15 hüvelykes gránáttal egy selyempapír-darabkára tüzelne, és az visszatérve õt magát találná el.
Ha az atommag belsejében az anyag többé-kevésbé egyenletesen oszlana el, akkor az a-részecskék a lemezen, bár lassulva, de eltérülés nélkül haladnának keresztül, hasonlóan, mint a puskagolyó a vízben. Az a-részecskéknél néha jelentõs irányváltozás volt megfigyelhetõ. Többségük (miközben energiájuk egy részét elveszítették) egyenesen haladt át a lemezen, néhányuk iránya azonban jelentõsen megváltozott. Ez csak azzal volt magyarázható, hogy az atomok tömegének legnagyobb része egy, az atom térfogatához képest igen kisméretû, pozitív töltésû magban koncentrálódik. Az atommag átmérõje 10-12 cm, ami az atom méretének tízezred része. A szórási kísérlet eredménye vezette végül Rutherfordot és Bohrt olyan atommodellhez, amelyben a pozitív töltésû pici, de nehéz magot a negatívan töltött elektronok felhõje veszi körül. A mag körül keringõ elektronok száma megegyezik az atom rendszámával. A hidrogénatom magjára a proton elnevezést 1920-ban Rutherford javasolta.
A kvantumfizika szerint a fény kvantumokból - fotonokból - áll. A fotonok olyan részecskék, amelyek nyugalmi tömege zérus, így csak fénysebességgel mozoghatnak. A valódi fotonok, éppúgy mint az elektronok és a protonok, végtelen hosszú ideig élnek, ha nem kerülnek kölcsönhatásba más részecskékkel. Az úgynevezett virtuális fotonok - melyek megjelenése a határozatlansági összefüggés eredménye - élettartama azonban nagyon rövid. Amikor két elektron kölcsönhat egymással, virtuális foton cserélõdik ki közöttük. A folyamat igen gyorsan zajlik le. Az ilyen rövid ideig létezõ foton tömege a határozatlansági elv értelmében nem zérus, minél rövidebb az élettartama, annál nagyobb lehet ez a tömeg. A mai nagy gyorsítókkal a proton tömegének százszorosánál nagyobb tömegû virtuális fotont is sikerült elõállítani.
Az, hogy a részecskék között ható erõt egy harmadik részecske cseréje közvetíti, a következõ szemléletes képpel magyarázható: ha ketten egy labdát dobálnak egymásnak, akkor ez ugyanazt jelenti, mintha valamely erõvel taszítanák egymást. A vonzóerõ már kicsit kevésbé szemléletesen úgy képzelhetõ el, hogy a labdát az egyik játékos el akarja venni a másiktól, aki azt vissza akarja tartani. Ezeket a taszító, illetve vonzó erõket kicserélõdési erõknek nevezhetjük.
A Rutherford-kísérlet, valamint a proton felfedezése után a változtathatatlannak hitt atomok hipotézise helyébe a változtathatatlan atomi építõelemek (proton és elektron) elmélete került. A fizikusok bennük látták az anyag végsõ építõköveit - a szerkezetnélküliséget és a felbonthatatlanságot. Ezt juttatta kifejezésre az „elemi részecske" elnevezés.
Amikor a fizikusok az atommag szerkezetét kezdték vizsgálni, azzal a problémával találták magukat szemben, hogy bár a magban lévõ protonok a Coulomb-erõ miatt nagy erõvel taszítják egymást, az atommag mégis stabil állapotban van. E problémának csak egy megoldása van, a természetben léteznie kell még egy igen rövid hatótávolságú, de nagyon intenzív erõhatásnak, amely az elektromos taszítást kompenzálja.
Ugyanakkor 1930 táján egyre nyilvánvalóbbá vált az is, hogy a nagy rendszámú atommagoknak sem a rendszámát, sem pedig a tömegét nem lehet megmagyarázni pusztán a magban lévõ protonok számával, mert nagy magok esetén a hosszú hatótávolságú elektromos taszítás legyõzi a rövid hatótávolságú magerõket, és így a mag nem lehetne stabil állapotban. Azt, hogy nagyobb rendszámú, nehezebb magok is léteznek (az atomtömegek körülbelül mindig egész számú tömegegységgel különböznek), egy elektromosan semleges, de tömegében és az erõs kölcsönhatással szembeni viselkedése szempontjából a protonéval azonos részecske feltételezésével vált magyarázhatóvá. Ezt a hipotetikus részecskét - melyet elektromos semlegessége miatt neutronnak neveztek el - Chadwick mutatta ki kísérletileg elõször 1932-ben.
Így 1932 táján a fizikusoknak négy olyan részecskérõl volt tudomásuk, amik az anyagot és az elektromágneses sugárzást felépítik: elektron, proton, neutron és foton. Feltételezték, hogy ezek a részecskék elemiek, vagyis nincsenek kisebb alkotóelemeik.
A magerõk töltésfüggetlenségének elvét, miszerint a magban ható erõ nagysága független attól, hogy az proton vagy neutronok közt hat, Heisenberg mondta ki 1931-ben. Wigner azt javasolta, hogy a protont és a neutront tekintsék ugyanazon objektum - a nukleon - két különbözõ töltésállapotának.
Ez volt talán az elsõ ilyen jellegû összekapcsolása a különbözõ részecskéknek, melynek késõbb nagyon nagy szerepe lett a részecskék szimmetriáinál, a spontán sérülõ mértékelméleteknél.
1930 után az atom, illetve részecskefizika új korszaka bontakozott ki. A fejlõdés alapja a kísérleti fizika rohamos fejlõdése. A részecskék detektálására szolgáló, már régebben ismert számlálócsõ mellett felfedezték és kifejlesztették a sokkal pontosabb és részletesebb adatokat szolgáltató eszközöket: a ködkamrát, a fotoemulziós módszert, majd késõbb a buborékkamrát. Ezzel párhuzamosan nagy részecskegyorsítók építésébe kezdtek, hogy a felgyorsított nagy energiájú részecskék ütközésekor - a keletkezõ és elbomló részecskék nyomainak analizálásával - megvizsgálhassák a köztük lévõ kölcsönhatás természetét.
A klasszikus elemi részecskéket - az atomok szerkezetének magyarázatához szükséges alkotóelemeket - általában már kész hely várta az elmélet épületében. A többi új részecske felfedezése azonban meglepetés volt a fizikusok számára. A kísérletek eredményei új elméleti kutatások megindítóivá váltak.
1930 és 1950 között a kozmikus sugárzásban többnyire nehéz és erõsen instabil, igen rövid élettartamú elemi részecskék egész sorát fedezték föl: neutron (n0), pozitron (e+), muon (m-), pion (p), kaon (K), lambda hiperon (L) stb. Ezeket a részecskéket késõbb a részecskegyorsítókban mesterségesen is elõállították.
Az elemi részecskék kölcsönhatását leíró kvantumtérelmélet 1930 és 1950 között a részecskéket szerkezet nélküli, oszthatatlan, pontszerû objektumoknak tekintette.
Az új részecskék felfedezésével azonban az elemi részecskék száma rohamosan növekedni kezdett, ma már több száz ilyen elemi részecskét ismerünk. Ezek nagy száma, valamint az egyes részecskék között megmutatkozó hasonlóságok arra engedtek következtetni, hogy legtöbbjük, beleértve a protont és a neutront is, belsõ szerkezettel rendelkezõ objektumok - hasonlóan az atommagokhoz.
Míg az atomok leírására elegendõ volt a kvantummechanika, addig az elemi részecskék keletkezését és elbomlását ez az elmélet már nem tudta magyarázni. Ezért született meg a kvantumtérelmélet, mellyel már leírható volt a részecskék keletkezése és eltûnése.
A spin analógiájára a protonból és neutronból álló kétállapotú rendszerre Heisenberg bevezette az izospin fogalmát - a protonra az izospin harmadik komponense (I3) a+1/2, a neutronra pedig a -1/2 értéket veszi fel. Az izospin kvantumszámok és a részecskék töltése között az alábbi összefüggés áll fenn:
Q = e · (I3+ 1/2).
A magerõk töltésfüggetlensége a magerõk Lagrange-függvényének, illetve Hamilton-operátorának és az izospin komponensei felcserélhetõségének következménye. Ezt matematikailag úgy lehet leírni, hogy a Lagrange-függvény és az isospint leíró mennyiség „kommutál":
[L, Ii] = 0.
Az egyes töltött részecskék közötti elektromos kölcsönhatást a közöttük kicserélt virtuális fotonok közvetítik.
Ennek analógiájára 1935-ben Yukawaa nukleonok között ható erõ, a magerõ magyarázatára a következõ elméletet javasolta: tekintsük a mag alkotórészei között ható vonzóerõt egy erõtérnek, amit a fotonhoz hasonló közvetítõ részecske - egy mezon - okoz. A végtelen hatótávolságú Coulomb-erõtérrel ellentétben a magerõk hatótávolsága kicsi, ezért Yukawa a Coulomb-potenciál távolsággal exponenciálisan csökkenõ levágását javasolta.
A virtuális kvantumokkal létrehozott kölcsönhatásokra jellemzõ, hogy a kölcsönhatás hatótávolsága szorosan összefügg a kicserélt kvantum nyugalmi tömegével. A fotonok nyugalmi tömege zérus, így a töltött részecskék elektromágneses kölcsönhatásának hatótávolsága végtelen. A magerõk körülbelül 1 fm (10-15m) hatótávolságából a közvetítõ részecske tömegére »100 MeV adódik.
1937-ben Anderson, Neddermayer, Street és Stevensona kozmikus sugárzást vizsgálva olyan részecskét találtak, aminek tömege az elektroné és a protoné közé esett - úgy gondolták, hogy megtalálták az erõs kölcsönhatás kvantumát. 1947-ben azonban kiderült, hogy a talált részecske mégsem lehet a Yukawa által megjósolt, az erõs kölcsönhatást közvetítõ részecske, mert sem tömege, sem élettartama nem felelt meg a követelményeknek és az anyaggal való kölcsönhatása is igen gyenge volt. Marshak és Bethe azt javasolták, hogy a talált részecske, az ún. müon (m) tulajdonképpen a keresett Yukawa-kvantum bomlásterméke, mely müonra és a Pauli által 1931-ben javasolt antineutrínóra () bomlik.
Néhány évvel késõbb, 1948-ban Berkeleyben, az ottani részecskegyorsítóban elvégzett proton-proton ütközésekben sikerült megtalálni a keresett p-mezont. A pozitív és a negatív töltésû pion mellett kimutatták a pion harmadik, elektromosan semleges töltésállapotát is. Ez a tény, hogy a p-mezonnak három lehetséges töltésállapota van, azt mutatja, hogy ennek az elemi részecskének az izospinje 1.
Ez azonban újabb problémához vezetett: a nukleonoknál az elektromos töltés és az izospin harmadik komponense között kapott egyszerû összefüggés nem adott jó eredményt a pionokra. Az összefüggést egy új kvantumszám - az úgynevezett barionszám - bevezetésével sikerült úgy módosítani, hogy most már az a pionokra is helyes eredményt adjon. A barionszám értéke a nukleonokra 1, a pionokra pedig 0, az összefüggés így a
Q = e · (I3+ 1/2 · B)
alakot veszi fel.
Az elvégzendõ kísérletek fontossága miatt a részecskegyorsítók építése felgyorsult. 1947-ben Butlerés RochesterWilson-kamrában olyan nyomokat észlelt, amik a pionnál, illetve a müonnál nagyobb tömegû részecskék jelenlétére utaltak. Kétféle nyomot is találtak: az egyik egy semleges részecske két töltött részecskére való bomlására, a másik egy töltött részecskének egy másik töltött részecskére, egy semleges részecske kibocsátásával való elbomlására utalt. Ezeket a K+-, K0-mezonok létezésének feltételezésével a
K0 ®p++ p-, K+® m+
bomlásokkal tudták azonosítani.
A Brookhavenben felépült gyorsítóban az 1950-es években már 1,5 GeV/c impulzusú pionnyalábot is elõállítottak, mellyel protonokat bombáztak. Ezekkel a kísérletekkel további újabb, a protonnál nehezebb részecskéket sikerült megfigyelni. Ezeket a nehezebb részecskéket hiperonoknak nevezték el:
p0+ p+®L0+ K+, p++ n0®L0+ K+.
A K0-mezon bomlásában két különbözõ élettartamú állapotot mértek ki, így a kapott eredmények magyarázatához összesen négy K-mezont, kaont kellett feltételezni (K+, K, K0). A kaonok barionszáma a pionéhoz hasonlóan zérus. A négy kaont két úgynevezett izodublettben lehet elhelyezni:
Gell-Mann és Nishijima arra a következtetésre jutott, hogy a már említett elektromos töltés és az izospin harmadik komponense között kapott összefüggést úgy lehet ismét helyrehozni, hogy még egy új - az erõs kölcsönhatás során - megmaradó kvantumszámot - az úgynevezett ritkaságot - kell bevezetni, melynek értéke
L: -1; K+: +1; K: -1; K0: -1; : +1.
A korábbi összefüggés módosított alakja így a következõ lett:
Q = e · [I3+ 1/2 · (B+S)].
Az 1970-es évektõl napjainkig a részecskegyorsítókban elérhetõ energiák növekedtével további három - az erõs kölcsönhatás során megmaradó - kvantumszámot fedeztek fel. Ezek a „charm", a „beauty" és a „top". A környezetünkben található anyagban az ilyen kvantum - számokkal rendelkezõ objektumok általában nem találhatók meg, mert élettartamuk igen rövid és nagyon gyorsan elbomlanak.
A részecskéket két nagy csoportra osztjuk. Az elsõ csoportba az erõsen kölcsönható részecskéket soroljuk - ezek a hadronok, melyek szintén két csoportba oszthatók, a mezonok és a barionok csoportjába. Minden mezonra jellemzõ, hogy végül elektronra, pozitronra, neutrínóra és fotonra bomlik, valamint hogy spinjük mindig egységnyi. Jellemzõ rájuk az is, hogy tömegük a spinnel együtt nõ. A másik csoport a barionok csoportja, ilyen a proton, a neutron, a hiperonok és a D (delta) -részecskék. A barionok spinje mindig feles, mindannyian nehezebbek a protonnál, a proton kivételével mindannyian instabilak, bomlásuk során barionokra és mezonokra bomlanak. Az egyetlen erõsen kölcsönható részecske, mely a bomlások során végtermékként megmarad, a proton - a többi, bomlás során keletkezett részecske már nem hat kölcsön erõsen. Az, hogy a barionok végül protonra és nem erõsen kölcsönható részecskékre bomlanak, fontos megmaradási törvény, a barionszám megmaradási törvényének következménye. A részecskefizikában a barionszám megmaradásának törvénye éppen olyan fontos, mint az elektromos töltés megmaradása. Ha a barionszám valóban megmarad, akkor a proton abszolút stabil, míg ha nem, akkor elbomolhatna pozitronra, neutrínóra és pionra. A barionszám megmaradásán kívül semmi olyan törvény nincs a fizikában, ami ezt megtiltaná. Így az atommagok stabilitása közvetlenül ennek a törvénynek köszönhetõ. Habár a proton abszolút stabilnak látszik, lehet hogy mégsem az, csak nagyon nagy az élettartama, a jelenlegi kísérleti korlát erre kb. 1032 év.
A mezonok és barionok (vagyis a hadronok) mellett az elemi részecskék másik csoportja a leptonok. Általában minden részecskét, amely nem hat kölcsön erõsen és spinje feles, leptonnak nevezzük. Lepton az elektron, a neutrínó, a m-mezon és az 1975-ben felfedezett t-részecske, melynek tömege a többi leptonéhoz viszonyítva már elég nagy, a proton tömegének mintegy kétszerese. A t-részecske a müonhoz hasonlóan szintén instabil, a müon bomlásához hasonló gyenge kölcsönhatási folyamatban bomlik el. A töltött leptonok az elektromágneses és a gyenge, míg a semlegesek csak a gyenge kölcsönhatásban vesznek részt. Az összes töltött leptonhoz kapcsolódik egy neutrínó, a leptonokat így három dublettbe rendezhetjük:
A hadronokat a leptonokkal összehasonlítva látható, hogy míg több száz hadront figyeltek meg, addig a leptonok száma mindössze hat. Ez arra utal, hogy a leptonok tényleg elemi részecskéknek tekinthetõk, a hadronok azonban összetett rendszerek, melyek kisebb és még elemibb egységekbõl - a kvarkoknak elnevezett részecskékbõl - épülnek fel. Vajon milyen tulajdonságúaknak kell lenniük ezeknek az alkotóelemeknek? Elõször is 1/2 spinûeknek, különben nem lehetne belõlük 1/2 spinû objektumokat felépíteni. Másodszor, az összetevõ részecskék barionszáma sem lehet zérus, mert a proton és a neutron barionszáma 1. Harmadszor, elektromos töltésüknek is kell lennie, mert a hadronoknak és a mezonoknak is van elektromos töltésük. A mezonokat így két részecskébõl, egy kvarkból és egy antikvarkból álló rendszernek tekinthetjük. Ha a barionokat összetett rendszernek képzeljük el, egyrészt biztosan több, mint egy kvarkból kell állniuk, másrészt kettõbõl nem állhatnak, mert akkor nem lehetnének feles spinûek. A legegyszerûbb lehetõség a három kvarkból álló rendszer. A proton, a neutron, a p-mezonok és a késõbb felfedezett r-mezon már kétféle kvarkból (u- és d-kvarkokból) felépíthetõek. A kvarkok tulajdonságai azonban rendkívül furcsák, szokatlanok: barionszámuk 1/3, és töltésük sem egész, ahogy azt eddig megszoktuk, hanem az u-kvarké +2/3, a d-kvarké pedig -1/3. A proton az uud, a neutron az udd, a pozitív és a negatív p-mezon (u), illetve (d) alakban állítható elõ, a semleges p0 és r0 pedig az u és d különbözõ kombinációiból áll. A késõbbiekben felfedezett kaonok és a L, S és X hiperonok felépítéséhez azonban még egy további kvarkra, az s-kvarkra van szükség, melynek ritkaság kvantumszáma -1 kell hogy legyen.
Az u-, d-, s-kvarkokból azonban már több részecske építhetõ fel, mint az akkoriban felfedezettek. Így a kvarkhipotézis lehetõvé tette új elemi részecskék létezésének megjövendölését, várható tulajdonságaival, tömegével együtt. A leghíresebb ilyen részecske az W- hiperon volt, ami három s-kvarkból áll, és így a ritkasága -3. Ennek sikeres kísérleti felfedezése 1964-ben a brookhaveni gyorsítóval végzett kísérletekben nagy diadala volt a kvarkmodell hipotézisének.
A kísérleti fizika fejlõdésével napjainkig még további három kvarkot sikerült felfedezni az elõbbiekben említett charm, beauty és top kvantumszámok hordozóit, a c-, b- és t-kvarkokat.
A neutronbomlás, és az ehhez hasonló ritka folyamatok magyarázatára - melyeket a kis valószínûség miatt gyenge kölcsönhatásnak neveztek el -, Fermiaz 1930-as évek elején állította fel az azóta róla elnevezett Fermi-féle négyfermion-elméletet. Eszerint a neutron egy pontszerû kölcsönhatással átalakul a másik három fermionná: protonná, elektronná és antineutrínóvá. Az elmélet alapján végzett számítások eredménye kitûnõen megegyezett a kísérleti megfigyelésekkel. Ez azonban inkább fenomenológikus leírás volt, mint megalapozott elmélet.
Az elemi részek fizikájában igen fontos szerepe van a szimmetriáknak. A fizikában szimmetriának nevezzük, ha a rendszer Lagrange-függvénye invariáns valamely transzformációval szemben, vagyis az egyenletek változatlanok maradnak a transzformáció során.
A transzformáció típusa kétféle lehet: folytonos és diszkrét. Folytonos, ha létezik egy - a transzformációt leíró - paraméter, melynek értékét folytonosan változtatva tudunk eljutni bármely transzformációhoz. A diszkrét szimmetriáknál ilyen nincs. A geometriában folytonos transzformáció például a tengely körüli forgatás, míg a diszkrét az egy pontra vagy egy egyenesre való tükrözés.
Az elmélet valamely folytonos szimmetriájának létezésébõl egy kontinuitási egyenletre, tehát egy differenciális megmaradási tételre lehet jutni, vagyis az elmélet minden folytonos szimmetriájához megmaradó mennyiség kapcsolódik. Így a teret leíró négydimenziós Minkowski-térben a koordináta-rendszer eltolásával - a tér homogenitásával (vagyis hogy az tér minden pontja egyenértékû) - szembeni invariancia következménye az energia és az impulzus megmaradása, míg a tér elforgatásával - izotrópiájával (vagyis hogy nincs benne kitüntetett irány) - szembeni invariancia következménye az impulzusmomentum megmaradása.
A kvantumtérelméletben a komplex téroperátorokra vonatkozó téregyenletek többnyire invariánsak a téroperátorok fázisának állandó értékkel való megváltoztatásával szemben:
F ® exp (i · J) F.
Ezt a transzformációt nevezzük elsõfajú mértéktranszformációnak. Ez a J paraméter folytonos függvénye. A Lagrange-függvény ezzel a transzformációval szembeni invarianciájából az elektromos töltés megmaradása következik. Más szavakkal ezt úgy mondhatjuk, hogy az elektromos töltés megmaradása annak a következménye, hogy a töltött tereket leíró komplex tér operátora fázisának nincs közvetlen fizikai jelentése, hanem csak az egyes állapotok közötti fáziskülönbségeknek (az összes fázis azonos értékkel való megváltoztatása az elmélet fizikai következményeit nem érinti).
A diszkrét szimmetriák nem tartalmaznak folytonos paramétert, így nem nyerhetõk egymásból folytonos átmenettel. Ezzel szemben ugyanazon diszkrét szimmetriát többször (általában kétszer) alkalmazva visszajutunk a kiindulási állapothoz.
A diszkrét szimmetriák közül rendkívül fontos a részecskefizikában a paritás - a jobb-bal tükrözési szimmetria. A közönséges fizikában a tükörszimmetria elve mindig érvényesült, minden fizikai folyamathoz lehetett találni egy másik folyamatot, amely az elõzõnek pontosan a tükörképe volt. 1956-ban Yangés Leeelméleti megfontolások alapján azt állították, hogy az elemi részecskéknél ez nem minden folyamatra érvényes. Így például a neutron bomlásakor kibocsátott elektron többnyire a neutron spinjének irányában mozog. Eredetileg azt hitték, hogy az elektronok mindkét irányban egyforma valószínûséggel repülnek ki az elbomló neutronból, és teljesül a tükörszimmetria elve. A Wu által már a következõ évben elvégzett kísérlet azonban ezzel a képpel ellenkezõ eredményt adott, vagyis igazolta Lee és Yang hipotézisét, az elektronok mindig ugyanabban az irányban repültek ki, vagyis a gyenge kölcsönhatásban csak az egyik - a spin irányához viszonyítottan - úgynevezett balkezes részecskék vesznek részt.
Ez a gyenge kölcsönhatásokra a paritás megmaradásának bukását jelentette. A Fermi-féle eredeti négyfermion elméletet ezért úgy kellett módosítani, hogy leírja ezt a paritás elvét teljes mértékben sértõ folyamatokat. Ennek neve a V-A-elmélet, ahol a fermionok között a vektor és az axiálvektor csatolás ugyanolyan súlylyal szerepel. Ez a módosítás Sudarshan, Marshak, Feynman, Gell-Mann, és Sakurainevéhez fûzõdik.
A gyenge kölcsönhatás leírása a folyamatok számításánál, a perturbációszámítás legalacsonyabb rendjében helyes, a kísérletekkel egyezõ eredményt adott, de a számolt magasabb rendû korrekciók elrontották ezeket az eredményeket. A megoldást az úgynevezett közbülsõ vektormezon hipotézisével próbálták megoldani. Azzal, hogy a négyfermion kölcsönhatást „széthúzták", úgy gondolták, nem négy fermion hat egymással kölcsön egy pontszerû folyamatban, hanem a kölcsönhatás - az elektromágneses és az erõs kölcsönhatásnál tapasztaltaknak megfelelõen - egy igen nehéz közvetítõ részecskén keresztül zajlik. Ez az ötlet jónak bizonyult, de egészen a további cikkekben említett, úgynevezett Higgsjelenségig továbbra sem tudta helyrehozni a számítások során magasabb rendben fellépõ divergens tagokat.
Amikor a nagy energiájú neutrínó kölcsönhat az anyaggal, általában töltött lepton keletkezik, ehhez hasonló folyamat felelõs a hadronok gyenge bomlásaiért is. A pozitív p-mezon bomlása során például a pionban lévõ kvark-antikvark pár megsemmisül, és ennek során müon és müon-antineutrínó pár keletkezik.
Már az 1960-as években felvetõdött a kérdés, nem létezik-e még egy más típusú gyenge erõ is, amely az elektromágneses kölcsönhatáshoz hasonlóan nem változtatná meg a kölcsönható részecske töltését. Ezt a fajta kölcsönhatást - a semleges áramokat - végül az 1970-es években fel is fedezték.
A gyenge kölcsönhatásoknál tehát két típusú folyamatot találtak, az egyiknél a folyamat során az egyes részecskék a kölcsönhatás során töltést cserélnek, a másiknál pedig nem.
Mindkét folyamatot - mivel egyforma erõsséggel játszódnak le - a gyenge kölcsönhatás különbözõ megnyilvánulásainak tekinthetjük. Az ötlet a gyenge kölcsönhatás leírására az elektromágneses és az erõs kölcsönhatás leírásánál bevált - valamely közvetítõ részecske (az elektromágnesesnél a foton, az erõsnél pedig p-mezon) cseréjén alapszik. Mivel a gyenge folyamatok mind töltöttek, mind pedig semlegesek is lehetnek, ez arra utal, hogy a gyenge kölcsönhatás nem írható le egyetlen részecske cseréjével, a leíráshoz egy töltött és egy töltetlen részecske is kell. A töltött részecske keletkezésével járó neutronbomlás például úgy írható le, hogy a neutron kibocsátja a virtuális W-részecskét, miközben protonná alakul, a virtuális W-részecske pedig elbomlik elektronnáés antineutrínóvá.
A semleges gyenge áramú folyamatok teljes egészében hasonlítanak az elektromágneses folyamatokra, a neutrínó szórás leírása például az elektromosan semleges virtuális Z-részecske kibocsátásán, majd elbomlásán alapszik.
A gyenge kölcsönhatás - mint a neve is tükrözi - igen gyenge, így az elõbbi W-, illetve Z-részecskék tömegére igen nagy értéket, a proton tömegének legalább ötvenszeresét kellett feltételezni.
Ilyen volt a részecskefizika helyzete az 1970-es évek elején. Az elektromágneses, erõs és gyenge kölcsönhatások alapvetõ szerkezetének leírása helyesnek tûnt, de egyrészt a magasabb rendû korrekciók számítása rossz eredményeket adott, másrészt sok - az elmélethez szükséges részecskét - még nem sikerült kísérletileg elõállítani, harmadrészt az egyes kölcsönhatások hasonló szerkezete ellenére sem volt köztük semmilyen kapcsolat.
Az áttörést a spontán szimmetriasértés, majd az egyes kölcsönhatások egyesített elméletének kidolgozása jelentette.
A részecskefizika fejlõdésének története szép példája a természettudományok „fejlõdéstörténetének". Arisztotelész- az akkori megfigyelések alapján - úgy gondolta, megtalálta az anyag alapvetõ építõköveit. Ez a hit sokáig tartotta is magát. Aztán ahogy fejlõdött a kísérleti fizika és sokasodtak a kísérleti eredmények, egyre több ellentmondás is napvilágra került - az elméleti fizikusok pedig keresték ezek magyarázatát. Thomson, Rutherford és Chadwick szintén azt hitték, hogy rátaláltak az anyagot felépítõ alapvetõ részecskékre. Aztán, ahogy tovább fejlõdött a kísérleti fizika, kiderült, hogy ezek mégsem azok. Az egyre nagyobb és egyre bonyolultabb kísérleti eszközök segítségével a kísérleti fizikusok egyre újabb és újabb információkat gyûjtöttek, az elméleti fizikusok pedig próbálták megmagyarázni azokat.
Hol az elmélet járt elõbb, hol a kísérlet. Van-e ennek a (talán végtelen) ciklusnak vége, vagy a fizika fejlõdésével az elemi részecskék szerkezetének egyre újabb és újabb, és persze pontosabb leírását kapjuk? Ez a kérdés a filozófusoké. A részecskefizika dolga megvalósítani Arisztotelész álmát és megtalálni az „oszthatatlant".
 
IRODALOM
[1] G. Gamow: A fizika története, Gondolat Kiadó, 1965
[2] G. Gamow, J. M. Cleveland: Fizika, Gondolat Kiadó, 1973
[3] F. R. Paturi: A technika krónikája, Officina Nova, 1991
[4] Simonyi Károly: A fizika kultúrtörténete, Gondolat Kiadó, 1981
[5] H. Fritzsch: Kvarkok, Gondolat Kiadó, 1987